

Topic : Atomic Structure

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.4,10,13	(3 marks, 3 min.)	[18, 18]
Multiple choice objective ('-1' negative marking) Q.5 to Q.7	(4 marks, 4 min.)	[12, 12]
Subjective Questions ('-1' negative marking) Q.8,11,12,14,15	(4 marks, 5 min.)	[20, 25]
Match the Following (no negative marking) (2 x 4) Q.9	(8 marks, 10 min.)	[8, 10]

(A) β -particle, proton, positron (B) positron, neutron, proton
(C) β -particle, neutron, proton (D) positron, proton, neutron

5.* Decrease in atomic number is observed during :
(A) Alpha emission (B) Beta emission (C) Positron emission (D) Electron capture

7.* Assuming that the charged particles emitted during natural decay of $^{92}_{\text{U}}\text{U}^{235}$ atoms are α and β particles only, which of the following products is/are not possible :
 (A) $^{89}_{\text{Ac}}\text{Ac}^{231}$ (B) $^{89}_{\text{Ac}}\text{Ac}^{227}$ (C) $^{89}_{\text{Ac}}\text{Ac}^{225}$ (D) $^{82}_{\text{Pb}}\text{Pb}^{207}$

8. A radioactive element A decays as follows :

$$\text{A} \xrightarrow{-\alpha} \text{B} \xrightarrow{-\beta} \text{C} \xrightarrow{-\beta} \text{D}$$

 Identify the isotopes and isobars among A, B, C and D.

9.

Column-I		Column-II	
(i)	Velocity	(p)	$\alpha < \beta < \gamma$
(ii)	Ionisation power	(q)	$\alpha > \beta > \gamma$
(iii)	Penetrating power	(r)	$\gamma < \beta < \alpha$
(iv)	mass	(s)	$\gamma > \beta > \alpha$

10. $^{23}_{\text{Na}}\text{Na}$ is more stable isotope of Na. Find out the process by which $^{24}_{\text{Na}}$ can undergo radioactive decay :
 (A) β^- emission (B) α emission (C) β^+ emission (D) K electron capture

11. $^{92}_{\text{X}}\text{X}^{234} \xrightarrow[-6\beta]{-8\alpha} \text{Y}$. Find out atomic number & mass number of Y and identify it.

12. Complete the following equations :
 (a) $^{235}_{\text{U}}\text{U} + ^1_0\text{n} \longrightarrow ^{87}_{\text{Sr}}\text{Sr} + ^{147}_{\text{Xe}}\text{Xe} + \dots$
 (b) $^{84}_{\text{Se}}\text{Se} \longrightarrow \dots + 2 ^0_{-1}\text{e}$

13. A positron is emitted from $^{23}_{\text{Na}}$. The ratio of the mass number and atomic number of the resulting nuclide is:
 (A) 22/10 (B) 22/11 (C) 23/10 (D) 23/12

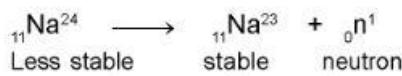
14. The total number of α and β particles emitted in the nuclear reaction $^{238}_{\text{U}}\text{U} \rightarrow ^{214}_{\text{Pb}}\text{Pb}$ is :

15. The number of neutrons emitted when $^{235}_{\text{U}}$ undergoes controlled nuclear fission to $^{142}_{\text{Xe}}$ and $^{90}_{\text{Sr}}$ is :

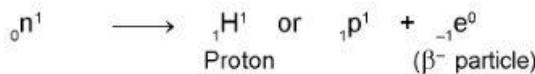
Answer Key

DPP No. # 22

1. (A) 2. (B) 3. (B) 4. (C)
 5.* (ACD) 6.* (BCD) 7.* (AC)
 8. A and D are isotopes. B, C and D are isobars.
 9. (i) p,s (ii) q,r (iii) p,s (iv) q,r
 10. (A) 11. $_{62}^{206}\text{Y}$; (Atomic no. 82, Mass no. 206), Pb
 12. (a) 2_{0}^1n , (b) 13. (C) 14. 8 15. 3

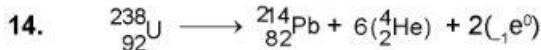
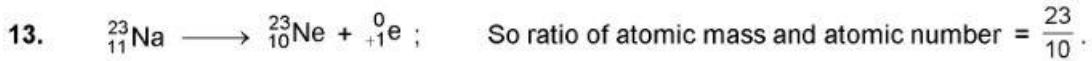

Hints & Solutions

DPP No. # 22

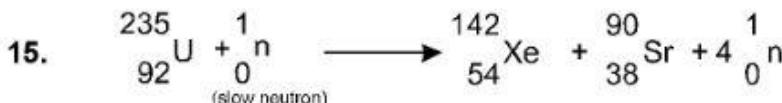

8. A and D are isotopes. B, C and D are isobars.

9. (i) p,s (ii) q,r (iii) p,s (iv) q,r

10. Isotopic ($_{11}^{24}\text{Na}$) is less stable than $_{11}^{23}\text{Na}$ because it shows radioactive decays. (Less stability of Na^{24} w.r.t. Na^{23} is also based upon $\frac{13}{11} \left(\frac{n}{p} \right)$. Higher value of $\frac{n}{p}$, higher will be instability so it is disintegrated to attain the stability).

This neutron on decomposition to give proton and β^- particle ($_{-1}^0\text{e}$)


Hence, isotopic sodium is changed into sodium by means of emission of β^- emission.

11. (i) The atomic mass of an element reduces by 4 and atomic number by 2 on emission of an α -particle.
 (ii) The atomic mass of an element remains unchanged and atomic number increases by 1 on emission of a β -particle.
 Thus change in atomic mass on emission of 8 α -particles will be $8 \times 4 = 32$
 New atomic mass = old atomic mass - 32 = 238 - 32 = 206
 Similarly change in atomic number on emission of 8 α -particle will be : $8 \times 2 = 16$
 i.e., New atomic number = old atomic number - 16 = 92 - 16 = 76
 On emission of 6 β -particles the atomic mass remains unchanged thus, atomic mass of the new element will be 206.
 The atomic number increases by 6 unit thus new atomic number will be $76 + 6 = 82$

$$\alpha = 6, \beta = 2$$

$$\text{Total} = 8$$

